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Abstract
The equations used to account for the temperature dependence of biological pro-
cesses, including growth and metabolic rates, are the foundations of our predictions of 
how global biogeochemistry and biogeography change in response to global climate 
change. We review and test the use of 12 equations used to model the temperature 
dependence of biological processes across the full range of their temperature re-
sponse, including supra-  and suboptimal temperatures. We focus on fitting these 
equations to thermal response curves for phytoplankton growth but also tested the 
equations on a variety of traits across a wide diversity of organisms. We found that 
many of the surveyed equations have comparable abilities to fit data and equally high 
requirements for data quality (number of test temperatures and range of response 
captured) but lead to different estimates of cardinal temperatures and of the biological 
rates at these temperatures. When these rate estimates are used for biogeographic 
predictions, differences between the estimates of even the best-fitting models can 
exceed the global biological change predicted for a decade of global warming. As a 
result, studies of the biological response to global changes in temperature must make 
careful consideration of model selection and of the quality of the data used for para-
metrizing these models.
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1  | INTRODUCTION

Temperature is one of the most important environmental drivers of 
physiology and thus has important implications for the biogeography 
of all organisms and how they will respond to global environmental 
change. Predicting the biological response to changes in temperature 
is thus a key endeavor in biology, and thousands of studies have mea-
sured the response of biological processes to temperature. Data on the 
temperature response of over 200 traits covering a wide taxonomic 
breadth (>300 species across all domains of life) have been compiled 

(Dell, Pawar, & Savage, 2011; Gillooly, 2001; Parent & Tardieu, 2012). 
Even for a single trait and a single group of organisms, for example 
phytoplankton growth rate, over 200 studies have been inventoried 
(Thomas, Kremer, Klausmeier, & Litchman, 2012; Thomas, Kremer, & 
Litchman, 2016). These datasets have been used to establish funda-
mental metabolic scaling rules (Dell et al., 2011; Gillooly, 2001) and 
biogeographic theories (Seto & Fragkias, 2007). In addition, tempera-
ture response curves, whether derived from in situ measurements of 
abundance along natural temperature gradients or from in vitro mea-
surements from laboratory experiments, are used extensively for the 
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TABLE  1 Nonexhaustive list of equations that have been employed to describe the relationship between growth or metabolic rates and 
temperature across the full response range

Formula Equations
Number of 
parameters References

4 4 (Li & Dickie, 1987) citing (Hinshelwood, 1947)

5 4 (Li & Dickie, 1987) citing (Johnson, Eyring, & 
Williams, 1942)

6 6 (Heitzer et al., 1991)

7 4 (Montagnes et al., 2008) citing (Schoolfield, 
Sharpe, & Magnuson, 1981)

8 3 (Li & Dickie, 1987) citing (Stoermer & Ladewski, 
1976)

9 4 (Montagnes et al., 2008)

10 4 (Thomas et al., 2012) citing (Norberg, 2004)

11 3 (Montagnes et al., 2008)

12 3 (Montagnes et al., 2008) citing (Flinn, 1991)

13 4 (Ratkowsky et al., 1983)

14 5 (Kamykowski, 1986)

15 5 (Boatman et al., 2017)
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prediction of the effects of climate change on the biogeography of 
organisms [e.g., (Beaugrand, Goberville, Luczak, & Kirby, 2014)], the 
risks of extinctions (e.g., Sinervo et al., 2010), and global biogeochem-
ical cycling [e.g., (Cox, Betts, Jones, Spall, & Totterdell, 2000)]. These 
essential predictions depend on our ability to accurately and precisely 
model temperature response and parameterize these equations for a 
large variety of traits and a diversity of species.

Currently, there is no consensus on the “best” equation to em-
ploy for modeling the thermal response of abundance and/or meta-
bolic rates, and it is likely that different processes require different 
equations. Here, we review the equations available for modeling the 
thermal response and test them on highly resolved measurements 
for seven phytoplankton species and published data covering a di-
versity of physiological traits across a large taxonomic breadth. We 
used subsampling from the highly resolved phytoplankton growth 
measurements to assess the effect of data quality on the error in the 
estimate of temperature response parameters and rates. The results 
of this analysis were used to establish nominal data quality require-
ments and to include robustness in the choice of equations. The effect 
of model choice and data quality is then compared to the amount of 
change predicted in the biogeography of a phytoplankton in response 
to global warming.

1.1 | Review of temperature response equations

The features of the temperature response that is of paramount impor-
tance include the cardinal temperatures that define the temperature 
range (Tmin, Tmax), the optimum temperature at which the response 
is maximal (Topt), and the sensitivity of the response to temperature 
change around Topt or as the temperature of the environment ap-
proaches Tmin or Tmax. In addition to three equations of response to 
suboptimal temperatures (Tmin to Topt, Equations 1–3, Supporting 
Information), at least 12 different equations have been proposed to 
account for the temperature dependence of growth rate, metabolic 
rates, or abundance across the full range from Tmin to Tmax (Table 1, 
Equations 4–15). Different equations may lead to different predicted 

responses to global warming or imply that different mechanisms un-
derlie the temperature response. Furthermore, different traits (e.g., 
growth and speed of movement) have different activation rates, cur-
vature, and skew (Dell et al., 2011), although these differences de-
pend both on model choice and on data quality (Pawar, Dell, Savage, 
& Knies, 2016). It has also been suggested that activation rates differ 
between taxa, but that these differences are also partly dependent on 
the equation used (Chen & Laws, 2016).

A number of studies have tested the quality of a few of these 
equations for a specific process (e.g., growth rate or photosynthesis) 
and species (Angilletta, 2006; Li & Dickie, 1987; Montagnes, Morgan, 
Bissinger, Atkinson, & Weisse, 2008). In these studies, model selection 
was based on a measure of equation fit to the data (e.g., likelihood) 
with a penalty for the number of parameters (e.g., by use of the Akaike 
information criterion –AIC-). In addition to likelihood-based selection, 
one needs to consider the accuracy of the estimates of key parameters 
such as the cardinal temperatures (e.g., the optimum, minimum, and 
maximum temperatures Topt, Tmin, Tmax) and the robustness of these 
estimates to changes in data quality. For example, equations with 
few parameters that assume a symmetric response around Topt would 
underestimate the Topt of a negatively skewed response but may still 
have the lowest AIC (be selected as the “best” equation) for datasets 
with few measurements.

Both the temperature range and/or the temperature resolution 
of experimental or observational studies may be constrained by lo-
gistical considerations and/or experimental goals (Figure 1). These 
constraints on data quantity and quality can affect model selection 
and the associated mechanistic biological interpretations of fitted 
parameters such as the activation energy, which provides an index 
of the increase in performance with increasing temperature when 
temperature is suboptimal (Knies & Kingsolver, 2010; Pawar et al., 
2016).

Even the minimal requirement to avoid overfitting, that the num-
ber of temperatures measured must exceed the number of parame-
ters in an equation, is often not met. There is a risk that fundamental 
postulates, such as the existence of a strong relationship between 

F I G U R E   1 Characteristics of existing datasets for the determination of thermal response curves. (a) Number of temperatures in the most 
comprehensive meta-analysis database currently compiled, excluding studies with two or fewer temperatures and three studies with more 
than 75 temperatures (Dell et al., 2013). Median and mean number of temperatures is 3 and 5.7, respectively. 71% of temperature responses 
only cover the supra- or suboptimal part of the temperature range and 84% do not have more than 7 temperatures and thus cannot be used 
to parameterize all equations in Table 1. (b) Number of temperatures in each study of the growth response of phytoplankton to temperature 
(Thomas et al., 2012). The median number of temperatures is 6 and 69% of temperature responses do not have more than 7 temperatures and 
cannot be used to parameterize all equations in Table 1. A large proportion of studies do not cover supra- and suboptimal temperature ranges
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microbial biogeography and thermal niche, and predictions of the re-
sponse to global change may be biased by fitting equations to data of 
insufficient quality. This is because estimates of the numerical values 
of equation parameters are expected to depend on both the tempera-
ture resolution of the data and the location (relative to Topt) and extent 
of the temperature range (relative to Tmin and Tmax) over which data are 
collected. However, the effect of data quality on the inferences that 
can be made when modeling temperature response across the range 
from Tmin to Tmax has not been tested previously.

Although suboptimal temperature responses are usually explained 
by thermodynamic activation and have been extensively studied, sev-
eral putative mechanisms are proposed for the supra-optimal decline 
in biological activity and these remain to be extensively tested. The 
decline can be attributed to the denaturation of one or more rate lim-
iting enzymes (Corkrey, Olley, Ratkowsky, McMeekin, & Ross, 2012). 
However, enzyme denaturation usually occurs at much higher tem-
peratures than the optimal temperature for most physiological rates 
measured. The decline in rate at supra-optimal temperatures for in-
dividual enzymes (Hobbs et al., 2013) or bulk processes (Schipper, 
Hobbs, Rutledge, & Arcus, 2014) may be explained by changes in 
heat capacity of the system driven by protein dynamics (the number 
of available modes associated with covalent bonds). Ecological ex-
planations have also been suggested for the supra-optimal decline, 
as temperature alters abiotic and biotic conditions. For example, gas 
solubility decreases with temperature. Increasing temperature could 
thus lead to increasing CO2 limitation for photosynthetic processes 
in aquatic photoautotrophs or increasing oxygen limitation for respi-
ration across all aquatic organisms (Pörtner, 2010; Pörtner & Knust, 
2007). This limitation could potentially extend to terrestrial organisms 
in terms of changes in partial pressure with temperature, but findings 
are inconclusive (Klok, Sinclair, & Chown, 2004).

Several equations have been proposed to model the full functional 
response of biological rates to temperature from the minimum to max-
imum temperatures that will support growth (Table 1, nonexhaustive 
and new models emerging, DeLong et al., 2017). Small differences in 
the shape of the response curve can have major implications for pre-
dicting performance in the field [reviewed in (Dowd, King, & Denny, 
2015)] and for interpretation of the mechanism(s) driving the activa-
tion and deactivation process. Four of the 12 equations in Table 1 are 
based on thermodynamics of chemical reactions (Equations 4, 5, 6, 7, 
review of equations for enzyme-catalyzed reaction rates in (DeLong 
et al., 2017)] and involve various combinations of exponential depen-
dencies on temperature. Two other equations that include exponential 
functions make no claim to a mechanistic underpinning and are purely 
empirical (Equations 11, 12). Equations 8 and 9 are modifications of 
a Gaussian function, while Equations 13 and 14 are second-order 
polynomial, and all four are again strictly empirical. Finally, the last 
equation in Table 1 (Equation 15) is also empirical but uses the sine 
function. Some of the simpler equations (three parameters) are sym-
metric around the optimal temperature, but most equations presented 
can capture the commonly observed negative skew found in tempera-
ture response curves (steeper inactivation at temperatures above Topt 
than activation at temperature below Topt).

The first attempts to quantify the functional response of rate (μ) 
to temperature (T), the μ-T curve, were based on analogies between 
microbial growth rates and chemical reaction kinetics. Recent studies 
suggest that all biological growth rates can be modeled as if growth 
is controlled by the activation and denaturation of a single limiting 
enzyme (Corkrey et al., 2012). The simplest of these (Equation 4) as-
sumes that the observed rate is the difference between two opposing 
processes, both of which follow the Arrhenius equation; in this equa-
tion, the coefficients within the exponential functions are activation 
energies. When applied to a chemical reaction, the parameter “a” is a 
rate constant with units of inverse time per degree Kelvin (e.g., s/°K), 
b = ΔH‡ (enthalpy of activation; units of kilocalories/mole), c = ΔH (en-
thalpy of reaction; units of kilocalories/mole), d = ΔS (entropy of reac-
tion; units of kilocalories/mole per °K). An earlier equation (Equation 5) 
describes the situation where active and thermally denatured forms of 
an enzyme exist in a reversible thermodynamic equilibrium. The most 
complicated of these equations is the “master equation” (Equation 6) 
of Heitzer, Kohler, Reichert, and Hamer (1991), which assumes that 
the active form of the rate-limiting master enzyme is in equilibrium 
with two inactive states that result from high-temperature or low-
temperature denaturation. When low-temperature denaturation 
is excluded, this master equation simplifies to Equation 7. In both 
Equations 6 and 7, “a” is the rate at the reference temperature of 
298.15°K (=25°C).

Despite clear deviations from this pattern, including skew, mod-
eling the temperature dependence of biological rate as a Gaussian 
distribution (Equation 8) has been attractive to ecologists in part be-
cause of its simple parameterization (Angert, Sheth, & Paul, 2011; 
Dowd et al., 2015). The Gaussian equation may be specifically suited 
to modeling aggregated responses that are the sum of individual re-
sponses. For example, although it may not be an adequate equation 
for the temperature response for a single species, it may be the cor-
rect equation for the response of a community that consists of many 
species with different values of Topt. Equation 8 describes a normal 
distribution, where the parameter “a” is the rate at the optimal tem-
perature (Topt) which is found at the midpoint of the temperature 
range and the parameter “b” is the standard deviation (also in units 
of temperature). Montagnes et al. (2008) modified this equation to 
obtain a modified Gaussian function that allows for the asymme-
try around the optimum temperature often seen in the μ-T curve 
(Equation 9).

Thomas et al. (2012) referencing (Norberg, 2004) multiplied the 
quadratic by an exponential function to obtain Equation 10. In this 
equation, there is a reference temperature (Tref) that determines the 
location of the maximum of the quadratic portion of the function. 
This is a generalization of the function proposed by Norberg (2004) 
in which the values of “a” and “c” were based on the Eppley function 
(a = 0.59/d; c = 0.0633/°C).

All of the equations considered to this point were either based 
on theoretical considerations related to chemical reaction kinetics 
(Equations 4–7) or allowed direct estimation of ecologically relevant 
parameters such as Topt or the thermal niche width (Equations 8–10). 
Two other equations do not have a theoretical basis nor do they allow 
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ecologically relevant temperatures to be estimated directly. These are 
based on a second-order polynomial (Equations 11, 12) (Montagnes 
et al., 2008).

None of the equations examined to this point include the lower 
and upper temperature limits for biological rates (Tmin, Tmax) as fitted 
parameters. However, Tmin and Tmax, along with the temperature at 
which the biological rate is maximum (Topt) are the cardinal tempera-
tures that are often of most interest to ecologists. Some of these 
equations may be reformulated to include some of the cardinal tem-
peratures, for example Equation 10 to include Tmin and Tmax (Baker 
et al., 2016). For equations lacking specific cardinal temperatures, the 
cardinal temperatures can be estimated from the fitted equation (see 
Methods section).

Finally, we turn to three equations where Tmin and Tmax are among 
the parameters found directly in the equation (fitted parameters), 
rather than needing to be calculated from the equation. These are 
the empirical equations of Ratkowsky, Lowry, McMeekin, Stokes, and 
Chandler (1983) (Equation 13) and Kamykowski (1985) (Equation 14), 
and an empirical equation that is a modified sine function Boatman, 
Lawson, and Geider (2017) (Equation 15). The modified sine function 
also returns the maximum rate (Rmax) at the optimum temperature as 
a directly fitted parameter, and Topt can be calculated from the other 
fitted parameters. This equation also includes parameters that charac-
terize the skewness (a) and kurtosis (b).

This is not a comprehensive account of all available equations 
to equation temperature response. Some equations have been pro-
posed for the purpose of simulation and are difficult to fit to data 
(e.g., Follows, Dutkiewicz, Grant, & Chisholm, 2007). Other equations 
are minor variations of equations we have included [e.g., (Beaugrand 
et al., 2014) contains an equation that is comparable to Equation 8].

2  | MATERIAL AND METHODS

2.1 | Measurement of phytoplankton growth rate

We measured the temperature dependence of growth rate for seven 
taxonomically distinct phytoplankton. Growth rates were measured 
at a high-temperature resolution (in 0.4–0.5°C increments) with ex-
tensive thermal coverage on either side of the temperature optima 
(18–39 individual temperatures per species; with at least two tem-
peratures with positive growth on either side of the optima). The dif-
ferent species provide different expected temperature optima, skew, 
and spread on which to test the equations (specific rates reported in 
Fig. S1).

The species assayed include a coccolithophorid, Emiliania hux-
leyi (CCMP 370); a cyanobacterium Trichodesmium erythraeum 
IMS101; and two diatoms, Thalassiosira pseudonana (CCMP 1335); 
Phaeodactylum tricornutum (CCMP 2561); two chlorophytes Dunaliella 
tertiolecta (CCAP1320) and Pycnococcus provasolii (CCMP1203); and 
a prymnesiophyte, Isochrysis galbana (Ply 546). Specific details of the 
media and light for each species are provided in the data file. The num-
ber of replicates at each temperature is in parenthesis next to each 
genus below.

Growth rates for Trichodesmium [published previously in (Boatman 
et al., 2017)], Emiliania, Thalassiosira, and Phaeodactylum were mea-
sured using the method described by (Boatman et al., 2017). Briefly, 
cultures were grown at low volumes (5 ml) in 12 ml glass test tubes 
in a thermal gradient block (temperature is controlled at both ends of 
an aluminum block using circulating water baths and a linear tempera-
ture gradient forms across the block). As a proxy for biomass, daily 
measurements of fluorescence (Fo) were made on dark-adapted cells 
(20 min) using a FRRfII Fastact Fluorometer (Chelsea Technologies 
Group Ltd, UK). Cultures were kept at the lower section of the expo-
nential growth phase and optically thin to avoid nutrient limitation, 
self-shading and to minimize CO2 drift.

For Dunaliella (rep=2), Pycnococcus (2) and Isochrysis (2) cultures 
were grown in 24-well microtiter plates sealed with air permeable 
membranes. Similar to cultures that were grown in glass test tubes, 
these plates were also grown on a thermal gradient block (described 
above). The surface of the gradient was covered with 1 cm of water to 
enhance thermal conductance between the block and the well plates. 
Growth of the cultures was assessed by a daily measurement of opti-
cal density at 660 nm using a multiparameter plate reader (FLUOstar 
Omega).

Growth was monitored during early exponential growth phase, 
and the exponential growth rate (μ) was calculated from the slope of 
the natural log of fluorescence or the natural log of optical density as 
a function of time.

2.2 | Published data

In order to provide a robust test of the thermal response between taxa 
and allow for a comparison of fit between traits, we supplemented 
our measured data (described above) with existing published data. 
We used the biotraits database (Dell, Pawar, & Savage, 2013), a da-
tabase of temperature response in phytoplankton growth (Thomas 
et al., 2012), and additional data from the literature (sources cited 
in data file). Datasets with positive rates for at least seven different 
temperatures with at least two temperatures being above and two 
being below the optimal temperature were selected from the data-
bases. Datasets were not selected based on our proposed data qual-
ity requirements (see section on “Data quality requirements” in the 
results section below) as too few datasets met these more stringent 
requirements.

2.3 | Equation fitting

We implemented the fitting of all equations in an R package available 
on Comprehensive R Archive Network (CRAN temperatureresponse). 
The equations were fit to data using a modified Levenberg–
Marquardt algorithm (Elzhov, Mullen, Spiess, Bolker, & Mullen, 2015; 
More, 1978). This algorithm allows robust fitting of nonlinear equa-
tions, even when reliable starting parameters cannot be established. 
When equation parameter values represent features of the dataset, 
the starting values were estimated from the dataset (e.g., the a in 
Equations 8–10 was set as the maximum rate in the dataset, Tref, Topt, 

https://cran.r-project.org/web/packages/temperatureresponse/index.html


10472  |     LOW-DÉCARIE et al.

Tmin, Tmax were set to the mean, the median, the minimum, and the 
maximum temperature of the dataset, respectively). When this was 
not possible, starting values for the parameters were the fitted pa-
rameters from the source publications for the equation, or a param-
eter set that ensured a downward parabola-like shape. In equations 
requiring inputs in °K, values were converted in the equation from 
°C. The equations were fit to positive nonzero data averaged across 
replicates at each temperature. This is essential for equations with 
either asymptotic or exponential relationships of rate with tempera-
ture at the extremes, because zero values reported from above Tmax 
or below Tmin have high leverage on the equation fit and lead to poor 
predictions within the biokinetic range. For appropriate equation fits, 
the only null rates that should be included are Tmax and Tmin, which 
cannot be determined before fitting. As a result, no zero values were 
kept. However, measurements extending to the limits of the growth 
range, that is, including zero values, would be necessary for the most 
accurate parametrization of some equations.

From equation fits, cardinal temperatures were extracted (Sinclair 
et al., 2016). These included:

Topt: the temperature at which the maximum rate is predicted to be 
achieved, which was determined using numeric optimization.

T50 min and T50max: the lowest and highest temperatures at which 50% 
of the maximum rate is predicted to be achieved. This was calcu-
lated as the roots of the function when 50% of the predicted maxi-
mum rate was removed (R package rootSolve).

Tmin and Tmax (CTmin and CTmax): temperatures within which a positive 
rate is predicted. This was calculated as the roots of the function. 
Some equations are asymptotic and therefore would not pre-
dict zero or negative rates, in which case Tmin and Tmax cannot be 
determined.

Activation and deactivation rates were calculated from the mean 
of value of the derivative across sub-  (Tmin to Topt) and supra-  (Topt to 
Tmax) optimal temperatures, respectively. Skew was calculated as the 

difference between activation and deactivation (i.e., a negative skew in-
dicates that deactivation is steeper than activation).

Equations were ranked on each dataset using Bayesian informa-
tion criterion (BIC). The difference between equations in model quality 
across datasets was tested using a Kruskal–Wallis rank sum test on 
BIC-based ranks followed by the associated post hoc pairwise com-
parison (Giraudoux, 2017; Siegel & Castellan, 1988). The same conclu-
sions arise when other measures of model quality were used; values 
for Akaike information criterion (AIC) and the AIC corrected for finite 
sample sizes (AICc) are available in supplemental material (Fig. S2).

Reported deviations in cardinal temperatures were calculated as 
the difference from the weighted mean across all equations (weighted 
by Akaike weights). Reported deviations in growth were calculated 
absolute deviation from the weighted mean across all equations 
(weighted by Akaike weights).

Differences between the different equations in their prediction 
of cardinal temperatures were assessed using analysis of variance 
(ANOVA) and a Tukey-HSD. An ANOVA and a Tukey-HSD were also 
used to compare equations for the temperature range required to 
stay within the designated thresholds for deviation from the fit to the 
full data (0.5°C for Topt and 5% for growth rate). Differences between 
equations for sample size required to stay within these thresholds 
were assessed using a generalized linear equation (GLM) with a log-
link for the Poisson distribution of count data and Tukey contrasts.

To assess similarity between equation predictions across the tem-
perature range, the Euclidian distance was calculated based on the 
rate predicted by the equation at each experimental temperature and 
clustering was done using Ward’s minimum variance method (Fig. S3).

2.4 | Data quality sensitivity analysis

To ensure that the high-resolution datasets were of sufficient qual-
ity to distinguish between equations, we conducted a simulation 
based on equation fits to each dataset. Normally distributed ran-
dom noise was added to the predicted growth rate value from each 
equation at each temperature. The noise was centered on 0 and 
its standard deviation was the square root of the mean residuals 
squared arising from the fit of the equation. Each equation was 
then fit to the simulated datasets generated by each equation and 
ranked based on BIC. Each simulation was replicated five times.

To measure sensitivity of the estimate for Topt and the estimate of 
growth rate at each temperature to the temperature resolution of a 
dataset, a decreasing proportion of the measured temperatures were 
removed based on: (1) random sampling across the temperature range 
to establish the number of temperatures required and (2) limiting the 
temperatures included in the analysis to those where the observed 
growth rates were above a predetermined proportion of the maximum 
growth rate, thus capturing a proportion of the temperature range. A 
range of 100% is expected to extend from Tmin to Tmax, while a range 
of 50% includes temperatures allowing at least 50% of the maximum 
growth rate to be achieved (from CT50 min to CT50 min). Topt is expected 
to always be within the temperature range of the data sampled using a 
proportion of the maximum growth rate.

F IGURE  2 Equation ranking based on BIC for each dataset. 
Equations are ordered by median rank (best equations at left 
with lower rank). Point is the median rank and error bars are 95% 
confidence interval across datasets
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Data quality requirements for precision and accuracy of Topt and the 
estimate of growth rate at each temperature were assessed by fitting the 
equations to subsamples of the phytoplankton growth datasets and com-
paring these values to values obtained from fits to the complete data. Error 
was measured as the absolute deviation compared to values obtained 
from the fits to the complete dataset of cardinal temperature measure-
ments (Topt) and the mean deviation in predicted rate at all temperatures. 
The temperature response of each individual species was treated as a 

replicate in this analysis, and confidence intervals were calculated across 
these replicates. An error of 0.5°C in Topt or an average error of 5% of the 
maximum growth rates was set as the minimum quality thresholds. The 
critical number of temperatures was defined as the maximal number of 
temperatures at which the threshold was exceeded plus 1. The critical 
range was the maximum range at which the threshold was exceeded or 
met. In some cases, this was the lowest value for number of temperatures 
or range at which equations could be fit to the subsampled data.

F I G U R E   3  (a) Equation fit to an example dataset of phytoplankton growth rate as a function of temperature (Phaeodactylum tricornutum). 
The points are the measured growth rate (same values across panels), and the lines are the equation predicted growth rates. (b) Equation 
residuals as function of temperature. (c) Value of the first derivative (gradient) at each measured temperature. Numbers within the figure indicate 
the equation number. Equations are grouped as a function of their number of parameters (3–6). Equations with four parameters are further 
divided between empirical and mechanistic equations to minimize clutter within the plots. Lines for individual equations are labeled with color 
and the equation number. Similar patterns can be observed for other species
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2.5 | Predicting changes in biogeography with 
global warming

Given the centrality of these equations (Table 1) to the prediction of 
the biotic response to global warming, tour aim was to assess whether 
differences among the equations used to account for the tempera-
ture dependence of growth rate can affect predictions of the effect 
of global warming on the biogeography of phytoplankton. To do this, 
we make the simplifying assumption that the geographical range of a 
species depends on the response of its growth rate to temperature. 
Sea surface temperature (SST) data were used to model the distribu-
tion of a species based on the response of its growth to temperature. 
Each equation was parameterized using the experimental data for the 
species, and the parameterized equation was applied to prediction of 
growth from SST.

Contemporary SST for the month of August for the years 2006 to 
2016 was obtained from MODIS data accessed using the Giovanni 

online data system, developed and maintained by the NASA GES DISC 
(Acker & Leptoukh, 2007). Predicted SST for August 2100 was ob-
tained from NCDC-NOMADS. This predicted SST was based on IPCC 
SRESA1B emission scenario for CO2 emissions and modeled using 
the Geophysical Fluid Dynamics Laboratory (GFDL) Coupled Climate 
Model (CCM 2.1) (Delworth et al., 2006). Values from the month of 
August are used as an example, and similar observations would be 
made if another month of the year was selected or if calculations were 
based on mean annual temperature, although the latter would not ac-
count for seasonality.

We recognize that any inferences based on such an analy-
sis are subject to the caveats that (1) phytoplankton abundance 
may not correlate with growth rate, (2) biogeography is affected 
by many other factors that may change in concert with or inde-
pendent of global warming, and (3) given their rapid growth rates, 
phytoplankton can be expected to evolve in response to sustained 
warming.

F I G U R E   4 Equation rank based on BIC across (a) trait type [data compiled in (Dell et al., 2013)] and for (b) growth rate across algal classes 
or phyla [data compilation of (Thomas et al., 2012)] for each equation. Only traits or classes/phyla with more than two taxonomic units are 
included in the figure. Points indicate the median and the error bars indicate the 95% confidence interval calculated across experiments (a single 
taxonomic unit can be in multiple experiments). Equation order is based on median equation rank for the phytoplankton growth dataset (as 
in Figure 2). Numbers in parentheses indicate the number of taxonomic units (up to species when identified) within each trait or class. Not all 
equations converged on a solution for all individual published datasets
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3  | RESULTS

3.1 | Differences between equations

All equations could be fit to each phytoplankton growth dataset, but 
no single equation consistently provided the best fit (i.e., could not 
account for the majority of variance) across all phytoplankton growth 
datasets (Figure 2). Most equations could not be distinguished across 
datasets based on rank, although Equations 6, 14, and 15 had better 
ranks than 4, and Equation 15 also significantly outranked 12 (p < .05, 
Figure 2).

Simulations indicate that the quality of the phytoplankton growth 
datasets is sufficient to for the selection of a best model. All equa-
tions had better rankings on the simulated data that they had gener-
ated than on data generated by any other equation (Kruskal–Wallis 
p < 10−3, Fig. S4).

For a given dataset, the 12 equations (Table 1) did not converge 
on the same optimal temperature or maximum growth rate (Figure 3). 
Predicted optimal temperatures were on average −1.18°C [range from 
−2.28 to −0.18°C] from the weighted mean (Akaike weights) predicted 
optimal temperature across equations (S4), and the mean absolute de-
viation in growth rate at each temperature was 0.018 day−1 [range 
0.015 day−1 to 0.022 day−1] when compared to the weighted mean 
across equations. Equations 4 and 6 consistently predicted higher 
optimal temperatures compared to other equations. Equations with a 
high number of parameters (5–6) led to similar predictions, but equa-
tions based on similar mechanisms, similar functional forms, or similar 
rank in terms of BIC did not lead to more similar predictions (Fig. S3).

Equations differed in their skew (deviation from median skew 
across equations, F11,81 = 2.87, p < 0.01), with the average skew being 
−0.017 [−0.030, −0.005] across all equations and datasets. As a con-
sequence, T50 min and T50max were highly variable between equations 
and datasets. The median distance between equations for each data-
set was 1.0°C for CT50min and 2.9°C for CT50max. However, for some of 
the species in our dataset, some equations (Equations 6, 7, 12, and 14) 
produced estimates greater than 10°C from the weighted mean value 
across equations for these cardinal temperatures.

There was no individual equation that outperformed all other 
equations consistently across or within traits, nor within an algal class 
(for growth rate) where there was taxonomic replication (Figure 4). All 
equations represent the best equation for at least one of the responses 
(for a trait of a given taxa), except for Equation 4 which performed 
poorly in general.

3.2 | Data quality requirements

For all equations (Table 1), there was an approximately linear increase 
in the error of cardinal temperatures estimates with a decrease in 
temperature resolution (i.e., number of experimental temperatures). 
Similarly, the error increased linearly with a decrease in the measured 
range of growth rates (difference between the minimum rate in the 
subsample and maximum rate). Only the most extreme equations 
differed significantly in terms of their data quality requirements for 

number of temperatures. On average across all equations, a minimum 
of 16 [range of 15–17] temperature points are required to maintain 
the predicted Topt within 0.5°C of the value predicted on the full data-
set including all temperatures measured (Equation 6 differed from 5, 
8, 10, and 14, p < .05, Figure 5a). A minimum of 8 [7–9] temperature 
points was required to maintain predictions of growth rate to within 
5% of the value predicted from the full dataset (Equation 4 differed 
from Equation 8 p < .05). For the range in rates measured, 56% [50%–
60%] of the full range (0 to maximum rate) is required to maintain the 
predicted Topt within 0.5°C of the value predicted on the full dataset 
and 29% [24%–34%] maintain predictions of growth rate to within 
5% of the value predicted from the full dataset (Figure 5b). Based on 
BIC, some of the “best” fitting equations require data of the highest 
resolution and range in order to maintain the quality of their fit (e.g., 
Equation 6 had the highest number of temperatures for the accurate 
prediction of Topt), while some of the weakest fitting equations are the 
most robust to loss in data quality (e.g., Equation 5), although these 
differences are only marginal.

3.3 | Implications for predictions of the response to 
global warming

We found that differences among equations in the predicted growth 
rates for our studied phytoplankton species translate into large dif-
ferences in expected contemporary biogeography even when the 
two best fitting equations are compared. Equations 6 and 15 have 
similar quality scores (Figure 2) and lead to similar predications of 
rate (Fig. S3); however, Equation 6 predicts a global mean growth 
of 1.9% less than Equation 15 (Figure 6a–c). This difference is com-
parable to the change predicted from a decade of global warming. 

F IGURE  5  (a) Number of temperature points and (b) the range 
in growth rate required to maintain the predicted Topt within 0.5°C 
of the value predicted on the full dataset (blue triangles), and to 
maintain rate predictions on average within 5% of the value predicted 
from the full dataset (red circles) for each equation. Equations are 
ordered based on median rank in the full datasets (matching Figure 2)
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Based on a projection of future SST, all equations lead to predic-
tions of large-scale changes in biogeography for the studied spe-
cies; however, the magnitude of change differs between equations. 
For example, the global mean decline in growth for P. tricornutum of 
20.75% over the modeled period or 2.3% per decade with Equation 
6 and 25.5% over the period or 2.9% per decade for Equation 15, 
Figure 6g–h).

4  | DISCUSSION

4.1 | Scale of difference in predicted biogeography 
and response to global warming

The difference between equations for predicted rates (mean differ-
ence of 0.018 day−1 across the temperature range for growth of our 
phytoplankton) and cardinal temperature (mean difference in Topt of 
0.44°C for growth of our phytoplankton) may be perceived as small 
but are ecologically significant. When scaled to predictions of changes 
in global processes, such as biogeography, differences between the 
best models can be larger than changes predicted over decades 
(Figure 6). The importance of data quality and modeling approach 
is recognized across disciplines which attempt to predict responses 

to global change. Differences in datasets and methodology can lead 
to opposing predictions of the change in biogeography with global 
warming (Brown et al., 2016). Changes in the scale of the observed 
difference between equations can alter predictions of species extinc-
tion or changes in the epidemiology of major diseases (Mordecai et al., 
2013).

The difference between equations in global average predicted 
rates and our threshold for data quality are both on the order of re-
sponses to global climate change, including observed changes in ter-
restrial primary production of 3.3% per decade from 1982 to 1999 
(Nemani, 2003) and predicted increases in abundances (and associ-
ated change in distribution) of 2.9% per decade for Prochlorococcus 
and 1.4% per decade for Synechococcus (Flombaum et al., 2013). 
They are also of similar scale to the difference between equations 
proposed to account for the colimitation of phytoplankton growth 
by temperature and nutrients (Thomas et al., 2017). Differences be-
tween equations are smaller than the estimated decline in phyto-
plankton biomass globally of 10% per decade over the last century 
(Boyce, Lewis, & Worm, 2010). However, these trends have been 
disputed (McQuatters-Gollop et al., 2011), and growth rate and 
standing phytoplankton biomass are not expected to be correlated 
(Behrenfeld, 2014).

F IGURE  6 Biogeographic distribution Phaeodactylum tricornutum based on two best-fitting equations (Equation 6 a,d,g and Equation 15 
b,e,h) applied to sea surface temperature for August, in present day (average from 2006 to 2016, a–b) and modeled for the future (averages for 
2095–2105, d–e); the average change in growth per decade (additive, not compounded) for the period 2006–2016 to 2095–2105 (g–h); and 
the difference between the predictions from these two equations for growth (c–f) and for change (i). Blue contour lines for growth are for CTmin/
max and T50min/max. This is not intended to be an accurate representation of the biogeography of P. tricornutum. Rather, it is provided to illustrate 
the scale of differences between equations, and we note that similar differences between equations arise independent of species
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4.2 | Constraints on cardinal temperatures

The relatively small difference between equations in the estimates of 
Topt for a given dataset may in part be attributed to the fact that the 
fitting of these equations has a bias to solutions that return values 
for the optimal temperature that fall within the temperature range 
measured or even at the mean temperature. In published datasets 
(Thomas et al., 2012), the estimates of optimal temperature were cor-
related with the mean temperature of measurements (R2 = 0.8, Fig. 
S6). This may reflect a bias of the underlying equation to force Topt 
to approach the mean of the temperatures at which measurements 
were made. Alternatively, experimentalists may use prior knowledge 
of temperatures where their species can grow to select experimental 
temperatures that are centered around Topt. Finally, negative growth 
rates may not be reported. However, when fitting all equations to ran-
domly generated data, strong correlations between the midpoint (or 
mean) of the range in measurement temperatures and calculated Topt 
remain for most equations (Fig. S7). The fact that equations can bias 
Topt toward mean values of the dataset can have important implica-
tions for the studies attempting to find a mechanistic explanation for 
differences in optimal temperatures [e.g., (Sal, Alonso-Saez, Bueno, 
Garcıa, & Lopez-Urrutia, 2015)].

The constraints on Topt estimates from equation fits pose a major 
challenge for the estimation of confidence around estimates of Topt. 
Bootstrapping methods (modeling on samples arising from random 
sampling from the original complete dataset with replacement re-
sulting in equation fits on even smaller subsets of data) commonly 
used to estimate will greatly underestimate parameter variance. In 
contrast, Monte Carlo simulations can greatly overestimate the size 
of the confidence interval around fits because the parameters do 
not follow an established multivariate distribution that can easily be 
simulated from the variance/covariance matrices and thus impossibly 
large or small rates can be predicted from simulations that ignore 
this issue.

The other cardinal temperatures (CTmin, CTmax, T50 min, T50max) 
are less constrained by the temperatures at which measurements 
were obtained (S7). To ensure accurate estimates of the extreme 
cardinal temperatures (CTmin, CTmax), extremely low growth rates (μ/
μmax < 0.05) must be included within the data. This is because the 
lower and upper thermal tolerance limits (i.e., CTmin and Tmax) are less 
constrained by the mean experimental temperatures than Topt and are 
more dependent on the “shape” implicit in the equations (e.g., sine vs. 
Gaussian). These limitations may combine to yield a large difference 
between equations in the estimation of these cardinal temperatures. 
This may partially explain why correlations between maximal (and 
minimal temperatures) and ambient temperature or latitude are often 
absent or weaker than those found for Topt in meta-analyses based 
on reported cardinal temperatures (Araújo et al., 2013; Sunday et al., 
2014), although correlation with latitude of equal strength has been 
found for Topt, Tmin, and Tmax when the same equation is applied across 
all datasets (Thomas et al., 2016).

The larger differences between equations at the upper and 
lower temperature regions of the curves (Tmin, T50 min, T50max, Tmax) 

are particularly problematic for the prediction of the response of 
organisms to global change. In addition to implications of shifts in 
range limits, these values will influence how an organism can cope 
with fluctuating temperatures. Increased temperature variation, and 
thus the capacity to deal with these more extreme temperatures, is 
expected to pose a greater threat to species survival than warming 
(Vasseur et al., 2014). Thermal variability can also alter the shape 
and the scale of the thermal response of organisms (Paaijmans et al., 
2013). In a variable environment, based on Jensen’s inequality, the 
optimal mean temperature is expected to be lower than in a constant 
environment [reviewed in Dowd et al., 2015)] leading to observa-
tions of optimal temperature higher than the mean temperature of 
the environment in more variable temperate habitats compared to 
less variable tropical habitats (Amarasekare & Johnson, 2017). The 
temperature response is also dependent on prior exposure to the 
measurement temperature, allowing for acclimation, and the dura-
tion of the exposure (Schulte, Healy, & Fangue, 2011). As a result, 
temperature fluctuations and acclimation need to be accounted for 
both in strategies for measurement and potentially in the design of 
equations.

4.3 | Implications for evolution under global change

In addition to the difference in estimates of cardinal temperatures, 
the shape of the temperature response curve will influence many 
predicted responses (Dowd et al., 2015), including the probability of 
an evolutionary response to global warming. If the absolute value of 
the first derivative of the curve (Figure 3) is high (i.e., a steep tem-
perature response, high-temperature sensitivity, a high Q10), a small 
change in temperature would be expected to lead to a large change in 
biological process, which in turn would be expected to translate into 
a large change in selection. The evolutionary outcome of this selec-
tion pressure will depend on numerous factors including the standing 
genetic diversity of the population, the population size, the tempera-
ture history of the population (Bell, 2013; Bell & Collins, 2008), and 
the direction of the change (Low-Décarie et al., 2014). For example, 
Equation 15 will predict a steeper temperature response at extreme 
temperatures than Equation 9 and thus lead to a prediction of greater 
thermal sensitivity and a higher selection pressure. In fluctuating en-
vironments, evolution should lead to a reduction in temperature sen-
sitivity (i.e., an increase in plasticity and a flattening of the response 
curve; (Clarke & Fraser, 2004).

Across our datasets, activation has a lower slope than inactiva-
tion (negative skew). The skew is found to correlate positively with 
optimal temperature (Pawar et al., 2016), consistent with a fixed 
upper limit to biological activity. This leads to the expectation of 
higher selection at the upper limits of thermal tolerance. This is 
compatible with the observation that the upper limits of heat tol-
erance in terrestrial ectotherms are highly conserved across tax-
onomic groups, whereas there is large variation in cold tolerance 
(Araújo et al., 2013) and that upper limits of heat tolerance cor-
relate with latitude, whereas lower temperature tolerance may not 
(Sunday et al., 2014).
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4.4 | There is no “Best” equation

Despite the importance of these differences between equations, 
the best equation for the response to temperature of phytoplankton 
growth rate or other biological traits cannot be reliably established 
on a single criterion. Notwithstanding penalties in the metric of 
equation quality, many equations with higher numbers of parame-
ters had lower BIC, but more complex equations were less robust to 
loss in data quality. Equation 15 for the response of phytoplankton 
growth to temperature performed well in terms of fit and robust-
ness to data resolution but not robustness to limitations in the range 
of relative growth rates captured within the experiment. The fact 
that we could not identify the “best” equation may be related to 
important biological phenomena, such as fundamental differences 
in the shape of the biological response among taxa or among the 
biological processes of interest, or issues with the data, fitting, and 
model selection.

The better performance in terms of likelihood of more complex 
equations suggests that most responses exhibit taxon-specific pat-
terns, such as skew and concave or convex activation, that must each 
be captured by a parameter. It may not be possible to have a single 
best equation. The mechanism of response to temperature of different 
major taxonomic groups may differ and even the response of different 
developmental stages for a given taxonomic group may exhibit differ-
ences in the shape of their response to temperature (Mordecai et al., 
2013; Paaijmans et al., 2013; Sinclair et al., 2016). Even genotypes 
within a species may differ in the shape of their temperature response 
(Boyd et al., 2013). For example, the temperature response may fun-
damentally differ between major groups of phytoplankton (Chen & 
Laws, 2016; Lürling, Eshetu, Faassen, Kosten, & Huszar, 2013; Thomas 
et al., 2016). Each major taxonomic group would require an equation 
that captures these differences in response. Testing this hypothesis 
would require the measurement of the response to temperature of 
many minor taxonomic groups (e.g., species) within major taxonomic 
groups with equally high-temperature resolution and range coverage 
for each tested taxon. Alternatively, an equation may yet be developed 
that outperforms all the equations we have tested, independent of 
taxa, at least for a given trait. This equation may be based on a better 
integration of interactions between multiple mechanisms for activa-
tion (e.g., accounting for different activation rates of multiple enzymes) 
and inactivation (heat capacity, substrate availability, and ecological 
factors) or include a yet to be established mechanistic explanation for 
these processes.

The limitations of current temperature response data for 
equation selection have been extensively recognized (Knies & 
Kingsolver, 2010; Pawar et al., 2016). Our results show that even 
for a single selected equation, very few existing datasets meet 
data quality requirements to minimize error in predictions of car-
dinal temperatures and rates across the full biokinetic temperature 
range. For recovering estimates from existing data that are limited 
by resolution and range, a robust equation with few parameters 
(e.g., Equation 8) that may not accurately represent the underlying 
process and patterns (such as skew) is preferable to better fitting 

equations for which changes in data range and resolution lead 
to important changes in estimates (e.g., Equation 6). We did not 
vary the precision of the measurement of rate or of temperature. 
A proposed rule of thumb is that the precision of the measure-
ment of temperature is at least three times that of the precision 
of the measurement of the response variable (Pawar et al., 2016). 
Another element not tested in our analysis is the location along 
the temperature scale, although measured activation can differ 
between organisms with colder or warmer growth ranges (Pawar 
et al., 2016), potentially influencing model choice, but this could 
not be tested in our high-resolution datasets because of tempera-
ture ranges for growth mostly overlapped. The challenge of model 
selection and the lack of quality data limit our ability to predict, for 
example, changes in the distribution of species with global climate 
change [e.g., (Gobler et al., 2017)].

Even in simple laboratory experiments with only a single tro-
phic level, the response to temperature of growth rate does not 
consistently lead to predictable changes in competitive dynamics 
(Limberger, Low-Décarie, & Fussmann, 2014). While the biogeogra-
phy of marine ectotherms matches the predictions of their thermal 
performance curves, this is not the case for terrestrial ectotherms 
(Sunday, Bates, & Dulvy, 2012). These differences between the re-
sponse of species to temperature, competition, and their distribu-
tion may be attributed to the complexities of ecological interactions 
and the associated need to integrate many concomitant biologi-
cal responses with the potential for nonlinear interactions. These 
differences may also limit the credibility of biogeographic infer-
ences such as that presented in Figure 6, which would completely 
change if, for example, nutrient limitation was included (Thomas 
et al., 2017). In models of natural ecosystems, the difference in 
response between trophic levels can cause trophic cascades, ex-
acerbating the predicted effect of warming (Chust et al., 2014). 
However, these differences between single species physiological 
responses and ecological observations may in part be resolved by 
a better measurement and understanding of the individual species 
responses to temperature. Our findings highlight the need to focus 
our measurement and modeling efforts on simple but fundamental 
aspects of the response of organisms to temperature, with the aim 
to make more robust predictions on the changes in the ecology of 
organisms and associated global biogeochemical processes based 
on future climate scenarios.
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